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Neurodevelopmental spectrum disorders like autism (ASD) are
diagnosed, on average, beyond age 4 y, after multiple critical
periods of brain development close and behavioral intervention
becomes less effective. This raises the urgent need for quantitative,
noninvasive, and translational biomarkers for their early detection
and tracking. We found that both idiopathic (BTBR) and genetic
(CDKL5- and MeCP2-deficient) mouse models of ASD display an early,
impaired cholinergic neuromodulation as reflected in altered sponta-
neous pupil fluctuations. Abnormalities were already present before
the onset of symptoms and were rescued by the selective expression
of MeCP2 in cholinergic circuits. Hence, we trained a neural network
(ConvNetACh) to recognize, with 97% accuracy, patterns of these
arousal fluctuations in mice with enhanced cholinergic sensitivity
(LYNX1-deficient). ConvNetACh then successfully detected impair-
ments in all ASD mouse models tested except in MeCP2-rescued mice.
By retraining only the last layers of ConvNetACh with heart rate
variation data (a similar proxy of arousal) directly from Rett syndrome
patients, we generated ConvNetPatients, a neural network capable of
distinguishing them from typically developing subjects. Even with
small cohorts of rare patients, our approach exhibited significant
accuracy before (80% in the first and second year of life) and into
regression (88% in stage III patients). Thus, transfer learning across
species and modalities establishes spontaneous arousal fluctuations
combined with deep learning as a robust noninvasive, quantitative,
and sensitive translational biomarker for the rapid and early detection
of neurodevelopmental disorders before major symptom onset.
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Neurodevelopmental disorders on the autism spectrum
(ASD) are heterogeneous. They are characterized by com-

mon deficits in social and communicative abilities as well as the
presence of repetitive and restricted behavior (1–3). Both genetic
and environmental factors contribute (1) to disorder onset in the
first years of life, yet a diagnosis of ASD is typically not formu-
lated before the age of 4 y. At present, the most effective clinical
interventions are applied behavioral analysis and speech and
occupational therapies, but treatment timing is critical before the
highly plastic windows of brain development rapidly close. While
early detection is clearly beneficial, the necessary noninvasive,
quantitative, and sensitive biomarkers reflecting key circuits that
are altered broadly across disorders are lacking.
The cholinergic circuit widely innervates brain regions to

control (along with noradrenaline) many functions, like pupillary
and cardiac oscillations (4–8). These are peripheral proxies for
arousal fluctuations in the autonomic nervous system, the pri-
mary mechanism subserving the fight-or-flight response. Arousal
oscillations mirror performance changes in cortical processing (5,
9), hippocampal activity in mice (5), and the encoding of memo-
ries in humans (10). Measuring arousal oscillations may then offer

an opportunity to detect alterations that mouse models and ASD
patients might share.
Indeed, individuals on the autistic spectrum exhibit dysregu-

lated behavioral states in adulthood profoundly impacting their
life (11–14), although we do not know when such altered states
first arise. Among several neuromodulatory systems, the cho-
linergic system seems to be strongly and consistently perturbed in
ASD (15–22). Namely, cholinergic neurons in the basal forebrain
of ASD patients are altered in size, number, and structure (19).
Concentrations of choline, a precursor of acetylcholine (ACh),
are also decreased in patients with ASD and related disorders
(20–24).
Spontaneous oscillations in pupil size are one-dimensional

time series that represent a clear proxy of arousal (4, 5, 9), which
can be measured across species since no specific task is involved.
Furthermore, arousal fluctuations may contain additional un-
known information that cannot be observed by conventional time
domain or frequency domain analysis. Deep learning, with its
natural application to biology (25) and medicine (26), is the ideal
method for robustly extracting complex features of arousal dy-
namics characteristic of brain dysfunction.
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Here, we evaluated spontaneous arousal fluctuations in both
idiopathic and syndromic mouse models of ASD. We recorded
the adult inbred BTBRT+ltpr3tf/J (BTBR) mouse strain (27) and 2
monogenic models of ASD-like Rett syndrome (RTT) and
CDKL5 disorder (CDD), respectively, the MeCP2- (23, 28, 29)
and CDKL5-deficient animals (30, 31). As neurotypical controls,
we used either the C57BL6/J strain for BTBR animals or wild-
type (WT) littermates of CDKL5- and MeCP2-deficient lines.
All experiments and data analyses were conducted blind to
genotype.
The BTBR strain has been characterized as a preclinical

model of core behavioral deficits seen in autism, including re-
petitive behaviors and impaired sociability and vocal communi-
cation (27). MECP2 gene mutations or changes in gene activity
have been reported in some ASD cases, moderate to severe
X-linked intellectual disability, severe neonatal encephalopathy,
and, more commonly, Rett syndrome. Mice lacking MeCP2
faithfully recapitulate the human condition as characterized by
an initial apparently normal development followed by regression,
loss of acquired skills, and onset of autistic features and epilepsy
(24). CDKL5 mutations have been found in CDD patients and in
subjects with neurodevelopmental disorders including ASD,

atypical Rett syndrome, and early infantile epileptic encephalopathy.
Mice lacking CDKL5 display a broad spectrum of behavioral ab-
normalities, including impaired learning and memory and autistic‐
like phenotypes (31–33).
After implantation of a head bar (SI Appendix), mice were

habituated to moving freely on a spherical treadmill (Fig. 1A).
Recordings of pupil diameter were acquired by an infrared
camera, analyzed online during a 30-min session (Fig. 1A), and
repeated multiple times over several days during the active phase
of the light/dark cycle. Pupil traces (Fig. 1B) were normalized
between the minimum and maximum value during each session
as shown in Fig. 1C, to measure fluctuations between arousal
states. In all ASD mouse models, we found a shifted distribution
toward maximal pupil size with respect to WT controls (Fig. 1D),
along with prolonged spontaneous fluctuations (Fig. 1E).
As it is unknown how early such an altered arousal phenotype

can be detected from pupil fluctuations, we analyzed both male
and female MeCP2-deficient mouse models of Rett syndrome, at
postnatal ages before behavioral regression, when their RTT
phenotypic score is still comparable to that of WT littermates
(28, 29). Significant alterations in spontaneous pupillary fluctu-
ations were found both in presymptomatic MeCP2−/x females
(postnatal day, P45) and MeCP2Stop/y males (P30) (Fig. 2 A–C).
As it has recently been reported that young ASD patients

exhibit altered pupillary response to visual stimuli (34, 35), we
also evaluated this classical light-induced pupillary reflex (Fig.
2D and SI Appendix, Fig. S1 A and B). Strikingly, this failed to
detect any abnormalities in presymptomatic mice (Fig. 2 E and
F). Only at later stages of regression, when mice were already
fully symptomatic, was a stronger pupil constriction and a slower
poststimulus redilation observed (SI Appendix, Fig. S1C).
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Fig. 1. Idiopathic and monogenic mouse models of ASD show prolonged
and frequent high-arousal states. (A) Schematic of the experiment. Pupil
traces are recorded from an awake mouse moving freely on a spherical
treadmill, during a 30-min session. (B) Pupil diameter trace from a WT
mouse. (C) Example of normalized pupil diameter traces from adult idio-
pathic (BTBR) and monogenic mouse lines (CDKL5 disorder and Rett syn-
drome), and their respective controls (C57BL6 and WT littermates). (D) Mean
histogram of normalized pupil states across different mice. (E) Autocorre-
lation of the normalized pupil diameter traces, between ASD model and
control mice. Shaded lines indicate SEM. Number of mice: P90 C57BL6 = 8,
BTBR = 5, CDKL5+/y = 5, CDKL5−/y = 5; P100 MeCP2+/x = 6, MeCP2−/x = 8; >P60
MeCP2+/y = 9, P90 MeCP2Stop/y = 4.
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Fig. 2. Presymptomatic MeCP2 deficiency is reliably detected by sponta-
neous arousal oscillations but not by classical pupillary light reflex. (A)
Normalized pupil fluctuations in MeCP2-deficient female (MeCP2−/x, light
magenta) and male (MeCP2Stop/y, light red) mouse models of Rett syndrome
at presymptomatic stage (postnatal day P45 and P30, respectively). (B) Mean
histogram of normalized pupil states. (C) Autocorrelation traces of nor-
malized pupil states. (D) Schematic of pupillary light reflex. Visible LED is
briefly pulsed onto the eye of an awake mouse in total darkness. (E) Mini-
mum pupil diameter and (F) redilation speed for MeCP2-deficient mice with
respect to WT littermates (dashed line, WT baseline for each genotype). Each
data point indicates average value measured from each mouse. Whiskers
indicate the minimum and maximum values of the data, while boxes in-
dicate the SD. Number of mice (each): P45 MeCP2+/x and MeCP2−/x = 5; P30
MeCP2+/y and MeCP2Stop/y = 7.
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Notably, MeCP2-deficient mice also showed longer locomotory
bouts in their home cage throughout disorder progression de-
spite their reduced speed and motor deterioration during later
symptomatic stages (SI Appendix, Fig. S2). Together, these re-
sults support the idea of precociously altered arousal states in
MeCP2-deficient mice, which can be reliably detected by spon-
taneous arousal fluctuations but not by classical pupillary reflex.
To test whether these alterations in arousal dynamics might

reflect cholinergic circuit alterations, we ran 2 sets of experi-
ments. First, we measured spontaneous arousal fluctuations in
knockout (KO) mice lacking LYNX1, a protein that dampens
nicotinic ACh receptor function in adulthood (36). Similar to the
ASD model mice, adult LYNX1 KO mice exhibited a shifted
distribution toward maximal pupil size with respect to C57BL6/J
(Fig. 3). Spontaneous fluctuations also differed specifically in the
slow temporal regime (oscillations > 1 s) across all mouse
models (Figs. 1C, 2C, and 3C), in agreement with enhanced
cholinergic signaling described in LYNX1 KO mice (4, 36) (Fig.
3C). This is consistent with cholinergic circuits mediating pu-
pillary fluctuations (37–40) and altered cholinergic drive in both
BTBR and RTT mouse models (27, 39–42).
Second, we aimed to directly rescue a cholinergic mechanism

underlying the shared arousal phenotype. We took advantage of
the MeCP2Stop/y line and bred them with a CHAT-Cre line
(MeCP2Stop/y::ChatCre+/−), allowing selective expression of MECP2
only in cholinergic circuits. This targeted rescue was sufficient to
prevent the arousal fluctuation phenotype (Fig. 3), while these mice
continued to develop hindlimb clasping and motor deficits (39, 42).
In addition, impaired pupillary reflex, further indicative of cholin-
ergic impairment, was observed in LYNX1 KO mice and rescued in
the MeCP2Stop/y::ChatCre+/− line (SI Appendix, Fig. S1C). Overall,
these results support the idea that altered cholinergic signaling un-
derlies the abnormal arousal fluctuations seen in ASD and related
disorders.
To distinguish between control and altered spontaneous pupil

size fluctuations more objectively, we trained convolutional
neural networks (ConvNets) on the data collected from LYNX1
KO mice to quantify the magnitude of cholinergic alterations in
ASD mouse models. This ConvNetACh was composed of 4

convolutional layers and 2 fully connected layers, then fed with
32-s-long pupil traces, randomized in order, and shuffled in type
for training (WT, black; LYNX1 KO, cyan, Fig. 4A; details in SI
Appendix). After training on the categorization task of distinguish-
ing WT from LYNX1 KO mice using 75% of the pupillometry
data, we found that some nodes in the first ConvNetACh layer
spontaneously developed selective sensitivity to multiple pupil
parameters, while deeper layers developed sensitivity to single-event
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fully connected layers, is fed with 32-s-long pupil traces, randomized in or-
der, and shuffled in type for training (WT, black; LYNX1 KO, cyan). (B) The
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from altered pupil fluctuations. (C) Measure of accuracy and loss during the
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mice (∼8,000 traces). (D) Representation of individual learned WT and
LYNX1 KO traces generated by the ConvNetACh using the DeepDream al-
gorithm. (E) Representation of the average trace for one WT and LYNX1 KO
mouse. (F) Validation of the model. Histogram of the responses of the
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peaks. Specifically, the first layer (rectified linear unit, ReLU 1)
became sensitive to multiple pupil dilations, peaks, and constric-
tions, while deeper layers (e.g., ReLU 2) detected single pupil di-
lation events (dilation, peak, constriction) and multiple pupil peaks
(Fig. 4B).
A total of ∼60 h of pupillometry between all WT (n = 30, ∼45 h)

and LYNX1 KO mice (n = 6, ∼15 h) were used for training,
achieving an accuracy of 97% (Fig. 4C). Examples of individual
network-generated WT and LYNX1 KO arousal patterns (SI
Appendix), which strongly and selectively activate the response of
either one or the other output of ConvNetACh, are shown in Fig.
4D. The mean of such network-generated arousal traces (Fig.
4E) represents the receptive field of the “neuron” and the av-
erage notion that the network developed to describe either the
WT or “altered ACh” class.
Interestingly, the average pupil trace identified by Con-

vNetACh was higher in amplitude and more fluctuating in
LYNX1 KO mice than in controls, and recapitulated the results
found by conventional analysis of higher frequency of wider pupil
state (Fig. 3B) and fluctuations in the <1-Hz regime (Fig. 3C).
The network was also validated with independent WT and
LYNX1 KO data (25% of total data). Fig. 4F shows the prob-
ability of detecting a pupil trace as belonging to a mouse with
“altered ACh” (ideally, always 0 for WT and always 1 for
LYNX1 KO mice).
ConvNetACh properly identified new traces as WT in 94% of

cases, and new LYNX1 KO traces as “altered ACh” in 95% of
cases. Once fully trained, the network was run on mice that were
suspected to have cholinergic abnormalities. It measured the
probability of an arousal fluctuation to be recognized as “Altered
ACh.” ConvNetACh found a significantly altered cholinergic
tone in both syndromic and idiopathic ASD mouse models
compared with WT. Data are summarized in Fig. 4G, both as the
average of data from each genotype (bars) and as the prediction
on single mice (circles).
Notably, ConvNetACh predicted the strongest ACh alteration

in both presymptomatic male and female MeCP2-deficient mice,
supporting the idea that this tool might be useful as an early
biomarker. Among the adult cohorts, ConvNetACh gave the
highest score to BTBR mice, followed by the MeCP2stop/y males,
and then the CDKL5 KO mice. Notably, ConvNetACh specifi-
cally selected for the “altered cholinergic trait” of the disorder
spectrum, as demonstrated by a lack of response to the case
of MeCP2Stop/y::ChatCre+/− mice, in which any cholinergic-
mediated phenotype was rescued while preserving other RTT
phenotypes (39, 42).
As pupillometry and heart rate cofluctuate both in mice and

humans [SI Appendix, Fig. S3; heart rate variability (HRV)], they
can be used as equivalent proxies of arousal (43). HRV, which
consists of spontaneous modulation of the heart rate in wake-
fulness, is atypically steady in ASD (44). Here, HRV detected
arousal alterations in female RTT patients. HRV data (one-
dimensional time series) were collected from the heart rates in
a population of 35 RTT patients at different regression stages
(15 in stage II, 18 in stage III) and of 40 typically developing
(TD) subjects, then normalized between the minimum and
maximum values across a long recording session (∼1 h long).
Human HRV measures shared the analogous amplitude and

temporal signature observed already in pupillometry data from
adult LYNX1 KO and MeCP2-deficient mice over development
(Fig. 5A), indicating that comparable robust cholinergic alter-
ations were detectable across species by either proxy. RTT pa-
tients exhibited a shifted distribution toward maximal heartbeat
with respect to TD subjects (Fig. 5B). Moreover, spontaneous
HRV also differed in the temporal domain specifically in the
slow regime (oscillations of >5 s), similar to LYNX1 KO and
MeCP2-deficient pupillometry (Fig. 5C). Higher and prolonged
arousal states were also detected independently from video

tracking data in all subjects (SI Appendix, Fig. S4 A–C) and
appeared to be more pronounced at later RTT regression stages
(SI Appendix, Fig. S4D).
Artificial neural networks carry great translational power be-

cause of their plastic capacity. Our neural network, reliably
trained on mice, was also able to spot the same arousal alter-
ations in RTT patients. By feeding ConvNetACh (previously
trained on LYNX1 KO mouse data) with human HRV traces, we
detected the altered arousal in RTT patients (Fig. 5D). Mea-
surements of cholinergic alteration made by ConvNetACh for
TD participants and RTT patients were close to those made,
respectively, in WT and symptomatic MeCP2−/x female mice, the
animal model closest to the RTT population of this study.
Finally, we investigated whether a ConvNet exploiting the

information already learned from mice could identify subjects as
TD or RTT, based only on their spontaneous arousal fluctuations
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TD and RTT subjects, using the ConvNetACh. Number of subjects: TD = 40,
RTT Stage II = 15, RTT Stage III = 18; Mann−Whitney U test P values: TD-RTT
Stage II ****P = 4.5E-6; TD-RTT Stage III ****P = 8.9E-5; RTT Stage II−RTT
Stage III ns = 0.90. Black and pink dashed lines indicate average predictions
for WT and P100 MeCP2+/x mice, respectively. (E) Transfer learning for
training ConvNetPatients, consisting of a fast and selective retraining of only
the very last layer of ConvNetACh. (F) Training strategy, consisting of
training ConvNetPatients from HRV data of a randomly selected number of
subjects (pairs of TD and RTT trainers), and validating accuracy on the
remaining individuals (validators). (G) Validation accuracy (i.e., percent of TD
and RTT patients properly identified by ConvNetPatients as a function of
training size). Accuracy is shown in the case of transfer learning from Con-
vNetACh (green), and in the case of a clear and untrained network (black),
repeating the training process for the same number of epochs. For each
training size, an equal number of TD and RTT patients were randomly
chosen as trainers for ConvNetPatients, which was then tested on the
remaining subjects (validators). The random selection was iterated 10 times
for each training size (among 40 TD and 35 RTT subjects), in consideration of
the variability arising from the choice of trainers. (H) Validation accuracy by
age (of validators), evaluated from a training size of 20 TD and RTT trainers
each, randomly selected 50 times. Dashed line is fit to data across different
age groups.
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(Fig. 5E). For this purpose, a subset of human HRV traces was
used to partially retrain the very last fully connected layers of
the cholinergic-sensitive ConvNetACh (originally trained using
LYNX1 KO and WT mice as described above). This transfer
learning technique yielded ConvNetPatients, a neural network
capable of classifying RTT patients from TD based on their
spontaneous HRV.
To test the reliability of ConvNetPatients in a typical scenario

of wide biomarker variability in patients, subjects were randomly
divided into 2 groups: trainers, whose HRV data were used to
train the neural network, and validators, who were then used for
testing the accuracy of predictions made by ConvNetPatients
(Fig. 5F). Since patient populations affected by rare neuro-
developmental disorders such as Rett syndrome are typically
small, the accuracy of predictions by ConvNetPatients was also
studied as a function of training size. As Fig. 5G shows, transfer
learning from readily abundant mouse data (green) exhibited
better performance than training a virgin neural network (black)
over the same number of epochs.
To successfully learn from a very few patients while still cor-

rectly interpreting the data by inspecting specific units in a net-
work, the network architecture must be kept simple. Thus,
ConvNetACh and ConvNetPatients share the same simple ar-
chitecture (Fig. 4A), compared with more complex ones typically
used for image classification or speech recognition. This helps
prevent overfitting and enables efficient transfer learning, po-
tentially because the mouse data are less variable than in hu-
mans. Genetic mouse models carry exactly the same mutation,
quite unlike patients who carry de novo mutations that generate
a spectrum of phenotypes. This higher reproducibility of the
mouse data is crucial to initiate the training process of the net-
work toward a more solid and stable result, which can then be
generalized by adding a second training with the human data.
Conversely, a network trained exclusively on sparse patients
would suffer from the intrinsic variability typical of human data,
resulting in a less stable training process and, eventually, lower
consistency in detecting arousal alterations.
In fact, the benefits of transfer learning dominate when the

number of patients used for training the algorithm is small and
the chance for highly discordant trainers is higher. Thus, a small
training size (∼10 pairs of TD subjects and RTT patients) was
sufficient to achieve an accuracy of 82%, as opposed to barely
72% when transfer learning was not used. The former perfor-
mance increases to 87% for a training size of 20 pairs (SI Ap-
pendix). In this case, with transfer learning (20 randomly selected
TD subjects and RTT patients each), we measured an average
accuracy of 80% even between 1- and 2-y-old individuals (Fig.
5H). By extrapolation, we can expect a detection accuracy of
∼77% even in the first year of life, well before RTT is ever di-
agnosed. Moreover, the performance of ConvNetPatients in-
creased with the number of patients, without ever reaching a
clear plateau (Fig. 5G). Our proof-of-concept study encourages
the expanded data collection from RTT or idiopathic ASD pa-
tients across clinical sites to further improve performance when
using ConvNetPatients.
Overall, these results reveal that spontaneous arousal fluctu-

ations are similarly altered in both syndromic and idiopathic
ASDmouse models and in ASD-like RTT patients (Figs. 1 and 5).
Arousal alterations are not dependent upon the proxy used to
detect them (pupillometry or HRV) and are consistent across
species, from mouse to human. Abnormalities can readily be
detected in presymptomatic mice (Fig. 2), supporting sponta-
neous pupillometry as a practical and reliable early biomarker.
Mechanistically, altered cholinergic drive is necessary and suffi-
cient to reproduce the arousal fluctuations observed—mimicked
by targeted deletion of the nicotinic receptor modulator LYNX1
and rescued by MeCP2 expression in the cholinergic source on
an otherwise RTT background (Fig. 3). While altered cholinergic

drive in BTBR and MeCP2-deficient mice has been documented
(27, 39–42, 45–47), ours is an indication of a similar abnormality
in CDKL5 mutants, suggesting further studies in preclinical and
clinical setting.
Deep neural networks are flexible nonlinear classifiers that

amplify subtle changes and detect even small aberrancies in
arousal traces, learning from multiple individual fluctuations.
Sophisticated enough to recognize patterns of pupil dilation and
constriction, yet simple enough to be inspectable and allow
learning from few samples without overfitting, the network must
be trained on a dataset selected from models with known per-
turbations contributing to the phenotype. Here, we focused on a
clear and specific discrimination clue of relevance to pupillom-
etry, cholinergic enhancement in LYNX1 KO mice. We further
showed that classical properties can still be extracted from these
“black boxes” by inspecting the nodes in ConvNetACh. Average
receptive fields for typical and “altered ACh” nodes satisfyingly
converged to expected results, displaying higher pupil size and
modulation in mice with cholinergic enhancement. Notably, the
network was then able to capture the intrinsic variability of pupil
fluctuations, as reflected in the heterogeneous pupil fluctuations
generated by ConvNetACh for WT and LYNX1 KO mice
(Fig. 4D).
ConvNetACh detected the very same “cholinergic signature”

in presymptomatic MeCP2-deficient mice as well as in RTT pa-
tients. High accuracy and reproducibility were achieved through
different levels of understanding of the “language” of sponta-
neous arousal fluctuations. In contrast, traditional pupillary reflex
to light stimuli in presymptomatic MeCP2 mutant mice was unable
to detect any difference compared with WT littermates. More-
over, the number of human trainers needed for ConvNetPatients
to successfully discriminate TD from RTT patients was relatively
small. This is particularly crucial for rare developmental disorders
in which the training size can be limited. Given the straightfor-
ward, noninvasive nature of spontaneous arousal measures, co-
horts of siblings at risk of developing ASD or carrying monogenic
mutations like fragile X or tuberous sclerosis, in which only a
subset of individuals go on to develop ASD, can now be pursued in
large-scale studies across multiple sites.
We demonstrate transfer learning as an ideal choice for

translational studies not just across species but also across the
modality of measurement (e.g., pupillometry and heart rate). We
found that spontaneous fluctuations of arousal are commonly
altered in both idiopathic and genetic mouse models of ASD,
both in the amplitude and temporal domain. These results il-
lustrate the utility of this approach as a first-pass screening tool
warning of impending neurodevelopmental abnormalities for
timely intervention.

Materials and Methods
Mice. Mice were raised under standard laboratory conditions. Animal care
and experimental procedures were performed in accordance with protocols
approved by the Boston Children’s Hospital Institutional Animal Care and
Use Committee.

Human Participants. Data were recorded from 35 RTT girls and a control
group of 40 TD girls with no history of prenatal or postnatal difficulties. All
human procedures were reviewed and approved by the Boston Children’s
Hospital Office of Clinical Investigation and the institutional review board,
and written informed consent was obtained from each participant or her
guardian prior to testing.

Measurement of Spontaneous Pupil Fluctuations and Pupil Reflex. The pupil
was imaged and tracked by an infrared camera. Pupil reflex was recorded in
response to light-emitting diode (LED) stimulation.

Deep Learning Analysis. Traces were downsampled to 2 Hz, randomly seg-
mented to 32 s length, and shuffled; 75% of the traces were used for training,
while the remaining 25% were used for validation.
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Statistics. The experimenter was blind to genotype during data acquisition,
and no data points were rejected. The significance of the difference was
established using the nonparametric 2-sample Kolmogorov–Smirnov test,
and further confirmed by Wilcoxon signed rank sum test.

Transfer Learning. Transfer learning was performed using the Neural Network
toolbox in MATLAB by retraining only the very last layer of the ConvNetACh,
feeding the neural network with human HRV data.

Heart Rate Variation. The heart rate was used as a proxy of the arousal mostly
for patients.
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